
Change your Car’s Filters: Efficient Concurrent and
Multi-Stage Firewall for OBD-II Network Traffic

Felix Klement
Chair of Computer Engineering
University of Passau, Germany

felix.klement@uni-passau.de

Henrich C. Pöhls
Chair of IT Security

University of Passau, Germany
hp@sec.uni-passau.de

Stefan Katzenbeisser
Chair of Computer Engineering
University of Passau, Germany

stefan.katzenbeisser@uni-passau.de

Abstract—Modern cars offer one common interface to the
outside, the OBD. Among the multitude of protocols that could
exchange messages with the car’s internal devices over OBD the
CAN-BUS protocol is the most well-known; several commercial
devices (so-called dongles) would allow to send and receive
messages without any user-controlled restrictions. In order to
enable fine-grained filtering on the CAN-BUS we exploit a
security weakness called man-in-the-middle: the car or dongle
does not apply any origin authentication as neither digital
signatures nor message authentication codes (MACs) are used.
We are the first to present this approach and offer measurements
for our concurrent and multi-stage design that enables a fine-
grained and extensible filtering approach for all protocols within
the OBD.

Index Terms—Network Security, Information Flow Control,
Vehicular Security, CAN, OBD-II

I. INTRODUCTION

The on-board diagnostic system (OBD) is a vehicle diag-
nostic system and the de facto interface for communication
with the external environment. OBD supervises all exhaust
gas influencing systems during operation. Furthermore, other
important electronic control units (ECUs) are monitored. This
allows for example reading the current speed, rpm and other
information from the car. Occurring errors are communicated
to the driver via different methods (e.g. control lights, audio
signal etc.) and are persistently stored in the respective control
unit. Thus, error messages can be retrieved via standardized
interfaces. While most OBD-II communication today happens
over ISO 15765 (CAN-BUS), a total of five protocols exist and
can be used over OBD-II: ISO 15765-4 (CAN-BUS) [1], ISO
14230-4 (KWP2000) [2], ISO 9141-2 [3], SAEJ 1850 (VPW)
[4], SAEJ 1850 (PWM) [4].

With all the above-mentioned functions car drivers are
tempted to connect dongles to this port and let those dongles
retrieve/send data via the OBD interface. The first attack that
comes to mind would be a malicious dongle that sends false
commands to the car, but even if information flows only in

The authors acknowledge the financial support by the Federal Ministry of
Education and Research of Germany in the program of ”Souverän. Digital.
Vernetzt.” Joint project 6G-RIC, project identification number: 16KISK034.
Additionally, this work was partially funded by the Bavarian Ministry of
Science and Arts under the ForDaySec project.

the other direction this allows attacks especially against the
privacy of drivers1. Note, the data that can be retrieved from
the car is a treasure trove, it includes drivers’ habits that can
be considered personal information. Thus drivers should be
able to control and limit the data flow.

In this paper, we exploit the fact that the OBD interface
lacks basic data authentication mechanisms, making it possible
to place a firewall as a man-in-the-middle to allow fine
granular filtering of the respective protocols. Effects of such
filtering on commercially available dongles can be shown, such
that they can not trust the car’s data and often use secondary
sources, like sensors from an accompanying smartphone ap-
plication [5].

The de facto standard used for communication today is, as
already mentioned, the CAN-BUS. Therefore, we will also
use this technology for the first prototype of such a generic
filter and for testing its performance. More precisely, we have a
working software implementation as well as suitable hardware
for ISO 15765. Nevertheless, our approach as well as the
system underlying it is designed to be easily extensible to all
protocols mentioned above as well as any individually mod-
ified implementations thereof. You need a hardware interface
(see Section IV) and the appropriate software counterpart, the
so-called protocol bindings, to support any kind of protocol.

II. RELATED WORK

There are several works ([6], [7] and [8]); showing the
wealth of information that can be extracted from a vehicle.
They demonstrate how to monitor cars, predict the state of
internal hardware, detect driving behaviour and detect various
anomalies. The predominant architecture as well as the threats
that dominate in modern vehicles was investigated by Wolf et
al. [9]. They found that the gateways built into the automotive
network require the use of powerful firewalls. Furthermore,
they found that the firewall implemented in the gateways
must also have rules that control access based on the security
relevance of the particular network. Something like filtering

1See: Connected Vehicles – Are Commuters in The Privacy Driving
Seat? by S. Meyer; Nov.2018; https://www.cpomagazine.com/data-privacy/
connected-vehicles-are-commuters-in-the-privacy-driving-seat/ [Sept. 2022]

approaches or firewall concepts for in-vehicle networks do
exist. Still, the amount of available research is very limited,
especially compared to work on cross-vehicle networks like
VANETS (vehicular area networks). Unfortunately, there is
even less information about existing solutions for vehicles.
As an example, the manufacturer NXP describes the need to
protect the car’s networked devices from unwanted outside
traffic by a gateway for ”filtering inbound and outbound
network traffic based on rules, disallowing data transfers
from unauthorized sources.“[10]. NXP further states that a
more fine-granular approach “[...] may include context-aware
filtering“ [10]. However, how the exact mechanisms as well
as the security functions work or are used in real vehicles
is often not publicly disclosed. Manufacturer solutions such
as the “Central Gateway” for central communication in the
vehicle from Bosch, which lists a firewall and an intrusion
detection system on its product page [11], unfortunately, do
not disclose any exact details on the respective product pages.
Even when specifically asked by the responsible department,
we were unable to obtain any further information on the se-
curity features mentioned. An approach that acts as a gateway
between the individual access points of a car was presented
by the company Karamba Security [12] in 2016. Here, the
developers integrate a system directly into the firmware. This
is intended to prevent malicious code from being infiltrated
into the system. Each control unit sets its own guidelines
and generates a so-called whitelist with permitted program
binaries, processes, scripts and network connections. Rizvi et
al. [13] presents in the literature a distributed approach for a
firewall system that can be used in automotive networks. Here,
the approach focuses on ensuring that only valid packets reach
an internal device by using a hybrid security system (HSS).

There are now some handy OBD-II devices on the consumer
market that allow inbound filtering or simply blocking of all
access. The main feature touted by these devices as being
blockable is the use of “key duplicators and an accessible
OBD-II socket“, which would allow car thieves to generate
new access codes, rendering the original keys obsolete. This
creates a security barrier between the external devices and
the data bus, protecting vehicle functions from unauthorized
access and tampering. In virtually all commercially available
products ([14], [15], [16], [17], [18], [19], [20]), there are
almost always only two modes: either always deny (Off) or
always allow (On). Their focus is generally on preventing
malicious senders’ packets from reaching important devices in
the vehicle by disabling access to the CAN bus. Of course, this
would also completely block data that could go the other way,
but this privacy impact is not disclosed. In addition, existing
approaches do not allow the use of an OBD-II dongle in an
activated state, as no data is available for processing. Our
approach closes this gap.

III. ARCHITECTURE

The architecture is generally divided into two parts. One
consists of all the software components that are responsible
for providing protocol-specific communication as well as the

actual execution of traffic filtering. The other part consists
of the associated hardware to address the respective protocol
interface from the hardware side.

A. Software Components

A complete detailed specification of all software compo-
nents would be inappropriate and out of scope. Nevertheless,
we would like to briefly explain the basic ideas of the
respective components in theory and show why we choose
exactly this approach. Therefore, we will briefly outline the
most important parts in the next sections.

1) Producer/Consumer Scheme: The producer-consumer
problem (also known as the bounded buffer problem) is a
classic example of a multi-process synchronization issue, the
first version of which dates back to Edsger W. Dijkstra in 1965.
Nevertheless, there are now promising approaches in software
development to efficiently eliminate this problem [21]. We
have decided on such an approach (more details can be found
in Section VII-A). A filtering approach is best realized with
a buffer in which incoming messages are accumulated. After-
wards, they can be processed one after the other, depending
on the queue. To be as unrestricted as possible in terms
of processing, this model is also perfect. Depending on the
respective computing power, several producers or consumers
can be started. In this way, load peaks can be easily absorbed.
The modular approach can also be applied by means of
differently implemented producers.

2) Modular Approach for Protocol Bindings: Since the
producer/consumer scheme allows us to easily create several
differently implemented producers, a uniform interface must
be defined. This interface ensures that the responsible con-
sumer can correctly process and forward incoming messages.
By means of this approach, it is possible to support incoming
messages of all protocols.

3) CAN-Bus Binding: In order to support the CAN protocol
for our implementation, a connector is needed to receive
messages as well as to be able to send filtered or processed
messages again. For this purpose, already used libraries as
well as the common syntax for encoding and decoding are
used. Furthermore, our binding is going to understand the so-
called DBC format. DBC stands for CAN Database and is a
proprietary format that describes the CAN bus data structure.

4) Processing Pipeline: A concurrent and multi-level data
input and data processing pipeline is used for the process-
ing pipeline. This makes it possible to efficiently consume
different sources, the so-called producers. Here, it is also
possible to configure the processing pipeline with regard to the
resources to be used. More precisely, the number of processes
for producer and consumer as well as the concurrency and the
batch size to be used. In Figure 1 you can see a schematic
overview of the pipeline. As already mentioned, it will be
possible to develop a producer for each protocol. So in the
future, there may be a producer for CAN, one for ISO9141 and
so on. There is a uniform interface to adhere to. The producers
then send their messages to the concurrent and multi-stage
data ingestion service. There, the incoming messages are

analyzed and then asynchronously serialized and inspected.
Here, serialization refers to the application of the active rules
and not to the quantity of messages.

Asynchronous Serialization and Inspection

Concurrent and Multi-S
tage Data IngestionProducer

Fig. 1. Simplified representation of the processing pipeline

5) Serialization: After the incoming messages have been
serialized and bundled into batches, the messages are checked
for the active rules as efficiently as possible. Since the behav-
iors of a rule can be sorted according to their strictness in the
restriction, the strictest behaviors will apply. This allows the
individual behaviors to carry out the checks in parallel.

IV. INTERFACING THE OBD-II FIREWALL

One of the most important parts of our firewall is the
connection to the OBD-II interface. The connection from our
firewall to the outside should not have any difference for
the end-user compared to the conventional OBD-II connector.
Our final prototype is a setup with a female connector port
and a male adapter cable. The female port will be used
for connecting devices that are filtered by our firewall. The
male connector will be used to connect the firewall to the
existing OBD-II interface of the respective vehicle. In order
to implement our filtering approach safely, we decided on a
clear physical separation between the CAN interface for the
incoming messages (i.e. the interface where you then connect
the dongle) and the CAN interface which is responsible for
sending or passing on the data to the OBD-II interface. This
separation concept makes it possible to have full control over
all incoming and outgoing traffic (see Figure 2).

V. POLICY MANAGEMENT

Policies are managed using configurations specified in
JSON format. We do not currently use any particular rule
framework or rule engine. The format is a simple one that
is adapted to the current use case but can be extended in a
modular way. The current overall structure can be seen in
Tables I and II.

To support future extensions a kind of version check
is implemented to check the respective rules before being

1# CAN Node

CAN Controller

CAN Transceiver

Microcontroller

RXDTXD

PI Header

CAN Low

2# CAN Node

CAN Controller

CAN Transceiver

Microcontroller

Data Link Layer

ISO 11898-1

Medium Access Unit

ISO 11898-2, 3

RXDTXD

CAN High
External CAN-Interface Internal CAN-Interface

Fig. 2. Separation concept for the CAN bus within our firewall

TABLE I
LIST OF BASIC PROPERTIES WITH THEIR ASSOCIATED FUNCTIONALITY

Property Type Description

name <String> Is just a simple naming of the individual rules for better
distinction. The name does not have to be unique.

description <String> Briefly describes the created rule in a few words.
version <String> The version number specifies the version of the properties to be

used.

protocol <Protocol-
Type>

Declares the protocol type to be used for the respective rule.
Currently there is only <CAN> as a declarable type.
However, due to the modular approach, more types may be
added in the future.

behaviours [<Behaviour>]
The behaviour field defines a list of all actions to be performed
later during the execution of each rule. More information about
the types available within a behavior can be found in Table II.

applied. Table I shows the overall wrapper structure for a
rule definition. This contains general information such as a
description, the protocol type to be filtered and the version
of the policy language currently in use. Table II describes the
structure of a so-called behavior. A rule can theoretically have
as many behaviors capsules as desired.

TABLE II
LIST OF PROPERTIES FOR A SINGLE BEHAVIOR INSIDE A POLICY

Property Type Description
type <String> Currently, three different behaviour types are supported:

• reject - Ignores all messages with the defined identifier
and associated value

• limit - Limits all accruing values of a message from the
defined identifier by means of a predefined value

• replace - Always exchanges all message values of a given
identifier with the given value

identifier <String> Defines the identifier of the CAN message present on the bus
value <String> Determines the data payload to be used for the respective set

type
The following properties are optional and do not have to be set

delay <Integer> If the delay property is set, all messages that fall below the
specified behavior will be delayed. The value is given as an
integer value and defines the delay time in milliseconds

pub once <Boolean> Allows messages in the scope of the behavior to be allowed
only once per system start. Once the message has been read
once, it is whitelisted and then not forwarded. By default, the
value is set to false.

id range <String> By means of the identifier range, the behavior value range to
be enforced can be extended.

val range <String> Allows messages in the scope of the behavior to be allowed
only once per system start. Once the message has been read
once, it is whitelisted and then not forwarded. By default, the
value is set to false.

VI. RULE ENFORCEMENT

The enforcement of the rules as well as the individual
behaviors is based on an assessment of importance. This means
that more important behaviors and rules outweigh lower ones.
Furthermore, it is possible to easily deactivate and activate
individual rules. Also, it is interesting to get some specific
metrics related to rule/behaviour enforcement. Therefore, the
number of filtered, modified and blocked messages is tracked.

VII. IMPLEMENTATION

A. Producer/Consumer Solution

As already described in Section III-A1, our approach
follows the so-called producer-consumer construct and thus
makes a modular approach possible. This is one of the
disciplines in which Elixir can demonstrate all its abilities and
advantages in the best possible way.

We are using a concurrent, multi-stage for building data
input and data processing pipelines. This enables developers
during testing to efficiently use data from various sources,
such as Amazon SQS, Apache Kafka, Google Cloud PubSub,
RabbitMQ and others. It is also possible to implement your
own producers. Depending on the scenario, you may want
to process messages as batches (groups of messages) before
publishing the data. This is also beneficial in our use case:
While we don’t need the batchers to communicate with an
extraneous API, it allows us to process the storing of CAN
messages in an encapsulated way and thus have no runtime
loss for publishing already filtered CAN messages. This allows
for increased throughput and consequently improved overall
performance of our pipeline. Batches are simply defined via
the configuration option.

Our configuration declares the following pipeline:
• 1 CAN producer
• 2 CAN processors (to show the concurrency approach)
• 1 batcher :batcher_can_bus with 1 batch processor
• 1 batcher :batcher_db_storage with 1 batch pro-

cessors
This configuration is of course adaptive and can be extended

very easily if required. A schematic representation of how
the pipeline looks exactly is shown in Figure 3. There, the
simple structure and how the individual pipeline components
are interdependent become clear.

At the end of the pipeline, the messages are automatically
acknowledged. If no batchers are configured, the acknowledg-
ment is carried out by processors. The number of messages ac-
knowledged, assuming the pipeline is running at full capacity,
is max_demand - min_demand. Since the default values
are 10 and 5 respectively, we will be acknowledging in groups
of 5. Since there are batchers in our case, the confirmation
is done by the batchers using the configured batch_size.
In case of errors, the failed message or batch is instantly
acknowledged as failed. A log report is also issued for each
error. In addition, we have defined the handle_failed/2
callback in our module. This callback is called by all failed
messages before they are acknowledged. This allows including

can_producer

can_processor_1 can_processor_2

batcher_can_bus batcher_db_storage

batch_can_bus_1 batch_db_storage_1 batch_db_storage_2

Fig. 3. Representation of producer, processor and batcher pipeline

additional error handling mechanisms if needed in the future
or implementing correct error behavior for other protocols.

The interplay between producer and consumer and the
components responsible for reading and writing CAN mes-
sages can be seen in Figure 4. The :InputStreamReader
accepts all messages arriving on the respective defined CAN
interface and processes them in our library. The module
then holds a stream ready from which accumulated mes-
sages can be processed at any time. The :Consumer cre-
ates a message handler after its parent process has been
started, which then requests a specific message demand
Dn from the :Producer. The :Producer then starts to
transform Dn messages from the :InputStreamReader
stream into message structs, which are then processed by
the :ConsumerMessageHandler. The actual filtering of
the individual CAN messages then takes place within this
handler (more on this in Section VII-C). Subsequently, the
filtered messages are transferred to the message batcher of the
:Consumer to be further processed there, if necessary. As
can be seen in Figure 3, there is the batch_can_bus_1.
This then writes the transferred messages back to the defined
CAN bus using the :CAN-BusWriter.

B. Rule Parsing

To check the correctness of the created rules before actually
applying them, we have created a rule parser. The general
parser structure is again designed in such a way that it is
possible to create further parsers for future protocols on the
basis of a uniform interface in order to be able to adapt to
possible changes in the respective rules or behaviors for other
protocols. Each parser must have a parse/1 function defined
that takes the current rule configuration as input. Within this
function, the structure for the respective protocol must then
be defined schematically. Listing 1 shows our defined scheme
for the CAN rule and its individual behaviors.

CAN-Messages

Process each CAN-Message

:InputStreamReader

CAN-Messages

Creates CAN-Message stream

:Producer :Consumer

Starts consumer process

Requests message demand

Message handler process

Starts handling requested demand

Get demand from stream

Returns message demand

:ConsumerMessageHandler

Passes message demand as broadway message

Process rule pipeline
Put broadway msg to batcher

:CAN-BusWriter

Publish individual CAN-Messages to output bus interface

Fig. 4. Sequence diagram of basic producer/consumer procedure

1 r u l e s c h e m a = %{
2 ”name” => : s t r i n g ,
3 ” d e s c r i p t i o n ” => : s t r i n g ,
4 ” p r o t o c o l ” => [: s t r i n g , V a l i d a t o r s . v a l i d a t e p r o t o c o l (”

CAN”)] ,
5 ” b e h a v i o u r s ” => [
6 : l i s t ,
7 : map ,
8 : r e q u i r e d ,
9 %{

10 ” t y p e ” => [: s t r i n g , V a l i d a t o r s . v a l i d a t e c a n t y p e ()] ,
11 ” i d e n t i f i e r ” => [: s t r i n g , V a l i d a t o r s .

v a l i d a t e c a n i d e n t i f i e r ()] ,
12 ” v a l u e ” => [: s t r i n g , V a l i d a t o r s . v a l i d a t e c a n v a l u e ()

] ,
13 ” d e l a y ” => [: s t r i n g , V a l i d a t o r s . v a l i d a t e c a n v a l u e ()]
14 }
15]
16 }

Listing 1. Example of what a rule scheme looks like based on our
implementation for the CAN protocol

In order to carry out our more specific checks, we create
so-called validators for individual fields. Basically, all desired
checks can take place within these validators. In Listing 2
you can see an example of our definition of a validator for
a protocol. Here we simply pass the desired protocol name
as :String and compare it with the value defined in the
rule for "protocol". This allows our approach to validate
additional protocols as individually as necessary.

When starting the CanConsumer, the configuration is
initially passed to the CanParser. The parser then checks
whether the configuration is valid by means of the defined
schema and the respective validators which are loaded via the
corresponding Validators module. A simplified overview
of the relationships between the modules can be found in
Figure 5. If the configuration of the rules is valid, it is stored
in an agent process. We implemented a basic server with
which the state can be retrieved and updated via a simple

API. This allows us to easily change the configuration during
runtime without having to stop or restart the firewall. Using the
API, the current configuration is then retrieved in the filtering
pipeline.

1 d e f v a l i d a t e p r o t o c o l (p r o t o c o l)
2 when i s b i n a r y (p r o t o c o l) do
3 fn d a t a −>
4 boo l = d a t a == p r o t o c o l
5 i f boo l do
6 : ok
7 e l s e
8 { : e r r o r , ” Expec ted => #{ p r o t o c o l} / Got => #{ d a t a}”}
9 end

10 end
11 end

Listing 2. Custom validator for testing if the right protocol is defined in the
rule schema

Rules

Rules

Consumers

«functions»
validate_protocol
validate_can_type

validate_can_identifier
validate_can_value

Validators

CanParser «functions»
parse

CanConsumer

Rules:Filters

«functions»
get_function

reject
limit

replace

CanFilters

Fig. 5. Structure and interaction of rules module with consumer module

C. Filtering Approach

Our filter approach consists of a single pipeline. We express
computations on collections, although the computations are
performed using multiple stages in parallel. It is designed to
work with both limited (finite) and unlimited (infinite) data.
By default, our approach works with batches of 500 items.
We also offer the concepts of ”windows” and ”triggers”. This
allows data to be split into arbitrary windows according to
event time. With triggers, calculations can be materialized
at different intervals, so it is possible to have a look at the
results while they are being calculated. Since our producer
provides a theoretically unbounded stream of CAN messages,
this is a perfect fit to allow efficient computation or filtering
of individual messages.

Roughly summarised, the pipeline can be broken down
into three main stages. The first step is to load the current
behaviors from the agent and check whether the current
message identifier occurs in the behavior identifiers. If this
is the case, the applicable behaviors are sorted according
to their type in step two. Each type has a rating RB which
is used for sorting, whereby 0 has the highest priority and
subsequently is sorted in descending order. For our CAN
implementation, the following ratings are used to determine
the order of preference:

• :reject - RB = 0
• :replace - RB = 1
• :limit - RB = 2

In the same step, a map is created using the rating RB as the
key. The associated value also consists of a map with the keys
:function for the associated filter function and :payload
for the defined behaviour value. Then, in step 3, the highest
priority filter function defined by RB is selected and applied
to the CAN message. The last step in the pipeline is to pass
the filtered message to the batchers. There, the Compostor
of our library will write the filtered message to the desired
CAN interface.

VIII. BENCHMARKS

In terms of benchmarking and performance testing, we have
limited ourselves to the performance of the actual filtering
pipeline. All our tests were performed on a Raspberry Pi with
a 64-bit Quad Core ARM v8 Cortex-A72 @ 1,5 GHz. We
execute each of the desired functions for a certain time after
an initial warm-up phase and then measure their runtime and
optionally the memory consumption.

In Table III you can see the measurement results for the runs
of our pipeline with different numbers of behaviors. The
number of measurements is always a multiple of three, as we
currently have three different types for a single behavior.
Therefore, in order to ensure that we always have an equal
number of types of each type, this multiple of three is the
result. The measurements generally show that our filtering
pipeline only requires a small amount of computing time
and therefore has no impact on usability. The iterations per
second measure how many times we could run the full pipeline

within one second. Figure 6 visualizes this and shows expected
linearity: the average runtime of the pipeline increases with an
increase in the number of behaviors (which increases the
number of rules to be parsed) defined within a rule.

Fig. 6. Run time boxplot for each measurement

The maximum number of behaviors used in our mea-
surements is 30000. This is the chosen upper limit for the mea-
surements. While being large compared to the foreseeable ap-
plication, the average execution time for 30000 behaviors
within a single rule is 59.72 ms. This is fast enough for the
intrinsic passive rule of a dongle. In itself, a slight delay in the
extreme case of 0.06 seconds is more than acceptable, because
during our functional tests using the RYD-Box [22] and the
Volkswagen (VW) Data Plug [23], we noticed that often the
interfaces that pass data to the outside of the vehicle or to third
parties are not time-critical in nature. Most of the time, it is
only a matter of connecting peripheral diagnostic devices, e.g.
via OBD-II, providing information to the infotainment system,
or the provision of data for cloud services such as monitoring
the car via a mobile phone app. Thus, the measured delays due
to our filtering of data can be neglected for the applications
of the commercial dongles we tested.

IX. CONCLUSION

Looking at related work, this is the first approach to enable
fine-grained ingress and egress filtering of messages flowing
over the vehicle’s OBD interface. We build and tested an
approach that facilitates a man-in-the-middle security weak-
ness to block or even selectively modify CAN-BUS messages
based on rules. Using the Elixir programming language and
a Raspberry Pi we build a concurrent and multi-stage OBD-
II data ingestion filtering approach with asynchronous serial-
ization that can be flexibly extended to cover different OBD
protocols in the future. While there have been approaches for a
firewall in a car, none of the existing works offer fine-grained
solutions. We provide measurements for our prototype. Our
measurements show a tolerable delay of about 5 ms for the
most likely number of behaviors (i.e. one behavior is
one action in a rule) in a rule using non-optimized hardware
such as a Raspberry Pi. Tolerable because the current com-
mercial dongle’s use cases are rather to report or log driving
behaviour for various purposes.

TABLE III
RESULTS OF THE RUN TIME COMPARISON OF THE SINGLE MEASUREMENTS

Measurement Iterations per Second Average Deviation Median Minimum Maximum Sample Size
3 behaviours 243.87 4.10 ms ±9.71% 4.08 ms 3.05 ms 6.79 ms 1218
30 behaviours 225.89 4.43 ms ±11.89% 4.36 ms 3.29 ms 10.23 ms 1218
300 behaviours 164.58 6.08 ms ±11.90% 6.03 ms 4.45 ms 11.07 ms 823
3000 behaviours 83.22 12.02 ms ±7.44% 12.02 ms 9.55 ms 14.68 ms 416
30000 behaviours 16.74 59.72 ms ±7.09% 59.10 ms 51.62 ms 69.53 ms 84

REFERENCES

[1] Road vehicles — Diagnostic communication over Con-
troller Area Network (DoCAN) — Part 4: Requirements
for emissions-related systems. Standard IS0 15765-4.
Geneva, CH: International Organization for Standard-
ization, Feb. 2011.

[2] Road vehicles — Diagnostic systems — Keyword Proto-
col 2000 — Part 4: Requirements for emission-related
systems. Standard ISO 14230-4. Geneva, CH: Interna-
tional Organization for Standardization, June 2000.

[3] Road vehicles — Diagnostic systems — Part 2: CARB
requirements for interchange of digital information.
Standard ISO 9141-2. Geneva, CH: International Or-
ganization for Standardization, Feb. 1994.

[4] Class B Data Communications Network Interface. Stan-
dard SAE J1850. Pennsylvania, USA: International Or-
ganization for Standardization, Oct. 2015.

[5] F. Klement, H. C. Pöhls, and S. Katzenbeisser. “Man-
in-the-OBD: A modular, protocol agnostic firewall for
automotive dongles to enhance privacy and security”.
In: 5th International Workshop on Attacks and De-
fenses for Internet-of-Things (ADIoT 2022) at ES-
ORICS. Springer, 2022.

[6] A. El Basiouni El Masri, H. Artail, and H. Akkary.
“Toward self-policing: Detecting drunk driving behav-
iors through sampling CAN bus data”. In: 2017 Inter-
national Conference on Electrical and Computing Tech-
nologies and Applications (ICECTA). 2017, pp. 1–5.

[7] B. Nirmali et al. “Vehicular data acquisition and analyt-
ics system for real-time driver behavior monitoring and
anomaly detection”. In: 2017 IEEE International Con-
ference on Industrial and Information Systems (ICIIS).
2017, pp. 1–6.

[8] A. Srinivasan. “IoT Cloud Based Real Time Automobile
Monitoring System”. In: 2018 3rd IEEE International
Conference on Intelligent Transportation Engineering.
2018, pp. 231–235.

[9] M. Wolf, A. Weimerskirch, and C. Paar. “Security in
Automotive Bus Systems”. In: 2004.

[10] Automotive Gateway: A Key Component to Securing the
Connected Car. NXP Semiconductors, Feb. 2018.

[11] Bosch. Bosch Central Gateway. 2022. URL: www .
bosch - mobility - solutions . com / en / products - and -
services/passenger-cars-and-light-commercial-vehicles/
connectivity - solutions / central - gateway/ (visited on
05/24/2022).

[12] Karamba Security. Karamba Security - Homepage. URL:
https://karambasecurity.com (visited on 04/08/2021).

[13] Syed Rizvi et al. “Protecting an Automobile Network
Using Distributed Firewall System”. In: Proceedings
of the Second International Conference on Internet of
Things, Data and Cloud Computing. ICC ’17. Cam-
bridge, United Kingdom: Association for Computing
Machinery, 2017. ISBN: 9781450347747. DOI: 10.1145/
3018896.3056791.

[14] The Diagnostic Box. OBD blocker. 2022. URL: https://
thediagnosticbox.com/product.php?pc=%5C%5COBD+
Blocker (visited on 07/26/2022).

[15] Ampire. CAN-Firewall. 2022. URL: https : / / www .
ampire . de/ - WFS300 - BT. htm ? SessionId = %5C & a =
article%5C&ProdNr=%5C%5FWFS300-BT%5C&p=
1857 (visited on 07/26/2022).

[16] Ampire. OBD-Firewall. 2022. URL: https : / / www .
ampire.de/Product- Archive/Ampire/Theft- protection/
AMPIRE-OBD-Firewall-without-harness- .htm?shop=
ampire%5C en%5C&SessionId=%5C&a=article%5C&
ProdNr = %5C % 5FOBD - FIREWALL % 5C & p = 1857
(visited on 07/26/2022).

[17] Paser. Firewall OBD2. 2022. URL: https://automotive.
paser. it /en- gb/Paser /Firewall - OBD2- card- included-
p1069m11.html (visited on 07/26/2022).

[18] UniversClug. Electronic Anti-thefts systems. 2022. URL:
https: / /www.universclub.com/en/buy/cat- electronic-
anti-thefts-systems-2164.html (visited on 07/26/2022).

[19] AutoCYB. Vehicle cybersecurity lock. 2022. URL: https:
/ / autocyb . com / product / %5C % 5Cautocyb - vehicle -
cybersecurity-lock/ (visited on 07/26/2022).

[20] CAN Hacker. Automotive diagnostic firewall. 2022.
URL: https://canhacker.com/projects/obd2-diagnostic-
firewall/ (visited on 07/26/2022).

[21] L. Lamport. “A New Solution of Dijkstra’s Concurrent
Programming Problem”. In: Concurrency: The Works
of Leslie Lamport. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 171–178. ISBN:
9781450372701.

[22] ThinxNet GmbH. RYD Box. 2022. URL: https://de.ryd.
one (visited on 07/26/2022).

[23] Volkswagen. Volkswagen Data Plug from Texa. 2022.
URL: https : / /www.volkswagen.de /de /konnektivitaet -
und- mobilitaetsdienste/konnektivitaet/we- connect- go.
html (visited on 07/26/2022).

