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Abstract—In this paper, we introduce Over-the-Air Multi-
Party Communication, a novel approach to achieve efficiently
scalable, private, secure, and dependable data aggregation using
Over-the-Air computation. The main idea of our approach lies
in a combination of techniques from lattice coding, Over-the-Air
computation and secure Multi-Party Computation to securely
and confidentially aggregate data over a multiple-access channel
with additive white Gaussian noise. Our theoretical analysis of
the proposed analog scheme developed in this work satisfies
the necessary reliability, security, and privacy criteria. Among
the potential applications of our approach are smart metering,
distributed machine learning, and data aggregation in wireless
sensor networks.

I. INTRODUCTION

The proliferation of connected devices through the Internet
of Things (IoT) has led to an explosion in the amount of
data generated by these devices. To improve energy efficiency
and achieve favorable scaling of communication capacity in
the number of the devices deployed in this area, Over-the-
Air (OTA) computation can be utilized for data aggregation
[1]–[8]. This method allows for computation of a function of
data distributed in a wireless network at a central terminal
without the complete transmission of the distributed data.
One promising application of OTA computation is the training
of machine learning models (cf. [9]–[12]) in wireless sensor
networks, where the computation of only a few features is
needed, making the decoding of data from the individual
sensors unnecessary. Smart meters are another example of
wireless devices that can collect and process energy con-
sumption data remotely, which has numerous benefits, such
as reducing the cost and complexity of manual meter reading,
improving billing accuracy, and enabling demand response
programs to decrease energy consumption during peak periods.
Nevertheless, the nature of data collected in these and similar
applications poses new challenges, including privacy and secu-
rity risks. To address these issues, private, secure, and reliable
OTA data aggregation methods have gained in importance.
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Concepts and methods from information-theoretic secrecy and
classical cryptography present a promising approach to sur-
mount security challenges. In particular, the fusion of secure
Multi-Party Computation (MPC) techniques [13] with OTA
methodologies holds great potential to combine the privacy
and security guarantees of the former with the efficiency
advantages of the latter.

Drawing on methods from lattice coding, in this work we
propose an Over-the-Air Multi-Party Communication (OTA-
MPC) scheme which leverages techniques from OTA compu-
tation and MPC to aggregate data in an efficiently scalable, re-
liable, secure, and private way over a multiple-access channel
with additive white Gaussian noise (AWGN). The suggested
methodology comprises two distinct stages, namely, an offline
phase and an online phase. During the offline phase, a suitable
lattice is agreed upon, random keys at the transmitters are
drawn and distributed and a key for the receiver is generated.
After this setup, in the online phase, the stakeholders perform
the pre-processing, transmission, and post-processing. Total
omission of the offline phase in such a protocol is not always
achievable. Therefore, an area for potential future research
involves investigating various techniques and strategies that
can mitigate the necessity for an offline phase, or alternatively,
mitigate the complexity and resource demands of the offline
phase. Although the proposed method is completely analog,
it displays a clear parallel to the traditional schemes used
in classical cryptography to provide privacy and security, for
example, in secure MPC and smart metering.

II. SYSTEM MODEL

For OTA-MPC, we consider a system model as shown
in Fig. 1. For individual measurements sk ∈ Sk, with
k ∈ {1, . . . ,K}, representing distributed data, the legitimate
receiver’s goal is to obtain a reliable estimate of a function
f : S1 × · · · × SK → R of these measurements.

1) Each measurement sk is encrypted in pre-processing
using a key Uk ∈ Vk by a pre-processing function

hk
L : Vk × Sk → RL, (Uk, sk) 7→ hk

L (Uk, sk)



…

… …

Fig. 1. System model of the considered scheme: The goal of the legitimate
receiver is to obtain a reliable estimate f̂ of a function f : S1×· · ·×SK →
R that has a suitable nomographic representation. The legitimate receiver is
subject to a privacy constraint regarding individual distributed data, while
the eavesdropper should not be able to access either distributed data or the
function f(s1, . . . , sK) thereof. The random variables U1, . . . , UK serve as
keys for transmitters k = 1, . . . ,K, while the legitimate receiver has access
to the random variable U which depends on (U1, . . . , UK).

which obeys the average power constraint∥∥hk
L(u, s)

∥∥2/L ≤ P , for all (u, s) ∈ V × Sk,
where L ∈ N \ {0}, and P ∈ R with P ≥ 0.

2) The pre-processed information XL
k := hk

L (Uk, sk) ∈
RL, with k ∈ {1, . . . ,K}, is sent simultaneously over
L uses of a wiretap channel with AWGN. The superposi-
tion property of the channel can be leveraged to perform
OTA computation. Accordingly, the resulting received
signal is

Y L =

K∑
k=1

XL
k +NL ∈ RL, (1)

with NL ∼ N
(
0, σ2

N · idL×L

)
, where idL×L denotes

the identity L× L matrix.
3) The aggregator has access to a key U ∈ V , which we

assume can be generated by a central authority during
an offline phase in dependence of U1, . . . , UK . During
post-processing, given by the function

GL : V × RL → R,
(
U, Y L

)
7→ GL

(
U, Y L

)
,

the aggregator decrypts the received signal to obtain an
estimate f̂ := GL

(
U, Y L

)
which is close (in the sense

made precise below) to the desired function f , with high
probability.

Based on this system model, the following objectives emerge:
1) (Reliability) We say that the OTA-MPC scheme is (ε, δ)-

reliable if

P
(∣∣∣f(s1, . . . , sK)− f̂

∣∣∣ ≥ ε
)
< δ

uniformly for all (s1, . . . , sK) ∈ S1 × · · · × SK .
2) (Secrecy) We say that the secrecy requirement is sat-

isfied if without knowledge of U,U1, . . . , UK , the
distribution of (XL

1 , . . . , X
L
K) is the same for every

(s1, . . . , sK) ∈ S1 × · · · × SK .
3) (Privacy) We say that the privacy requirement is satisfied

if without knowledge of U1, . . . , UK , and for every k ∈

{1, . . . ,K}, the distribution of (XL
k , U) is the same for

every (s1, . . . , sK) ∈ S1 × · · · × SK .

Remark 1. Note that we base our definition of privacy on
the channel inputs instead of the channel output. We aim to
incorporate alternative notions of privacy and explore their
consequences in future works.

The class of functions suitable for OTA approximation and
which we will consider in this work is introduced in the
following definition.

Definition 1. (Function class Fmon) [6, Definition 3]
Let S1, . . . ,SK ⊆ R be sets. Then, a Borel measurable
function f : S1 × · · · × SK → R is said to belong to Fmon if
there exist bounded and measurable functions (fk)k∈{1,...,K},
a measurable set D ⊆ R with the property f1 (S1) + · · · +
fK (SK) ⊆ D and a measurable function F : D → R such
that for all (s1, . . . , sK) ∈ S1 × · · · × SK we have

f (s1, . . . , sK) = F

(
K∑

k=1

fk (sk)

)
,

where for F there exists an increment majorant, which is a
strictly increasing function Φ: [0,∞) → [0,∞) with Φ(0) = 0
and

|F (x)− F (y)| ≤ Φ(|x− y|)

for all x, y ∈ D.

This means that every f ∈ Fmon has a nomographic
representation, i.e. f (s1, . . . , sK) = F

(∑K
k=1 fk (sk)

)
for

suitably chosen functions fk (sk) : Sk → R, k = 1, . . . ,K
and F : R → R. Examples of functions contained in Fmon are
weighted sums of bounded functions and p-norms for p ≥ 1
among other practically important function types [6].

III. PROPOSED APPROACH

Our proposed approach is based on the construction of a
suitable lattice. Λ is called an L-dimensional lattice if it is a
discrete subgroup of the additive group (RL,+). If its linear
span is RL, the lattice is called non-degenerate. With growing
values of the dimension L, both the resource consumption and
the reliability of the scheme increase. Therefore, the choice of
L represents a tradeoff between the goals of efficiency and
reliability.
For every λ ∈ Λ, the Voronoi cell VΛ

λ is defined as

VΛ
λ :=

{
x ∈ RL : ∀λ′ ∈ Λ : ∥λ− x∥ ≤ ∥λ′ − x∥

}
.

In the following, VΛ := VΛ
0 denotes the fundamental Voronoi

cell located at the origin. Ties are resolved in a systematic
way such that the Voronoi cells of a non-degenerate lattice Λ
are congruent and form a partition of RL. A lattice Λ induces
a modulo operation

mod Λ : RL → VΛ,



which has some key properties that are essential to our scheme.
Reliability will later be argued with the help of the distributive
law [14, Proposition 2.3.1]

∀x, y ∈ RL : (xmod Λ + y) mod Λ = (x+ y) mod Λ.

For our proof, we require the definition of two radii concerning
lattices. The effective radius rΛeff of Λ is defined as the radius of
a ball with the same volume as VΛ [14, Definition 3.1.1]. The
covering radius rΛcov of the lattice Λ is defined as the minimum
radius needed to cover RL by balls of radius r centered at the
lattice points:

rΛcov := min {r : Λ + Br (0L)} ,

where Br (0L) is a ball of radius r centered at the origin
0L ∈ RL. Thereby, the covering radius can be viewed as the
minimum radius of a closed ball centered at 0L which contains
VΛ. We proceed to formulate our main result, which states that
we are able to find pre- and post-processing functions for our
scheme that fulfill a reconstruction quality criterion as well as
a secrecy and a privacy criterion.

Theorem 1. For all σN < 1, φ ∈ (σN , 1), K ∈ N \ {0},
f ∈ Fmon with f : RK 7→ R and a fixed nomographic
representation f1, . . . , fK , F,Φ, for which it holds that for
all transmitters k ∈ {1, . . . ,K} holding sk ∈ Sk we have
ϑ := f1 (s1)+ · · ·+fK (sK) ∈ [−1, 1], and (given σN and φ)
for sufficiently large L ∈ N \ {0}, there is a lattice ΛL ⊂ RL

and a real number γ > 0 such that for all k ∈ {1, . . . ,K},
there are pre-processing schemes

hk
ΛL,φ : VΛL × R → RL

satisfying the average power constraint of 1; and there is a
post-processing scheme

GΛL,φ : VΛL × RL → R

such that the following holds:
Let f̂ be the estimate of f (s1, . . . , sK) at the receiver after

post-processing.
Then, we have
1) (Reliability criterion). The schemes of pre- and post-

processing are (ε, δ)-reliable, i.e.

PGΛL,φ(U,Y L)

(∣∣∣f (s1, . . . , sK)− f̂
∣∣∣ ≥ ε

)
≤ δ, (2)

with ε > 0, δ = 2 · σN√
L(φ−σN )Φ−1(ϵ)

·

1√
2π

e

−L(φ−σN )2(Φ−1(ϵ))
2

2σ2
N + exp(−Lβ1) + exp(−Lγ),

where Y L is the channel output.
2) (Secrecy criterion). Without knowledge of

U,U1, . . . , UK , the distribution of (XL
1 , . . . , X

L
K)

is the same for every (s1, . . . , sK) ∈ S1 × · · · × SK .
3) (Privacy criterion). If K > 1, then without knowledge of

U1, . . . , UK , and for every k ∈ {1, . . . ,K}, the distri-
bution of (XL

k , U) is the same for every (s1, . . . , sK) ∈
S1 × · · · × SK .

Remark 2. Theorem 1 also holds for ϑ := f1 (s1) + · · · +
fK (sK) ∈ [a, b] with a, b ∈ R, when normalizing with the
spread of f as done in [5]. For better readability, we restrain
ϑ to [−1, 1] in this paper. In the same spirit, we assume the
average power constraint P = 1, as one can always apply
suitable scaling in the pre- and post-processors.

We proceed to prove Theorem 1 through Proposition 1 later
introduced in this section. First, we define the pre- and post-
processing schemes.

Definition 2. Given any specific lattice Λ of dimension L
and φ ∈ (σN , 1), we define pre- and post-processing schemes
induced by (Λ, φ) as follows. The pre-processor at user k is
defined as

hk
Λ,φ :

(Uk, sk) 7→

{(
fk(sk)rsig√

L
1L + Uk

)
mod Λ, if rcov ≤

√
L,

0L, else,
(3)

where 0L,1L ∈ RL are the all-0 and all-1 vectors respec-
tively, rsig :=

√
L(φ−σN ) and the key Uk is uniformly drawn

from the fundamental Voronoi cell V of Λ. The post-processor
is defined in three steps:

1) Subtract the key using the modulo operation and rescale
the signal by applying

gΛ,φ : (U, Y L) 7→
(
Y L − U

)
mod Λ

rsig
·
√
L, (4)

where U =
(∑K

k=1 Uk

)
mod Λ.

2) Average the elements of the L-dimensional vector
gΛ,φ

(
U, Y L

)
=
(
g1
(
U, Y L

)
, . . . , gL

(
U, Y L

))
by

g̃Λ,φ

(
U, Y L

)
=

1

L

L∑
l=1

gl
(
U, Y L

)
. (5)

3) Apply the outer function F by

GΛ,φ

(
U, Y L

)
= F

(
g̃Λ,φ

(
U, Y L

))
. (6)

The estimate f̂ of the function f is given by

f̂ = GΛ,φ

(
U, Y L

)
. (7)

Remark 3. The reason we choose the all-zero vector in (3) in
case rcov >

√
L is so we can assume that the average power

constraint is satisfied (see (15)).

In the following, let ϑ :=
∑K

k=1 fk and let PNL denote the
probability distribution of the random vector

ZL := ϑ1L +
NL

(φ− σN )
, (8)

where NL ∼ N
(
0, σ2

N · idL×L

)
. Moreover, let P(t) denote

the probability distribution of the random vector g
(
U, Y L

)
given in (4). We proceed to choose in a systematic manner
several parameters that we will use in the following definitions
and proofs. For every φ ∈ (σN , 1), we pick φ1, φ2 such that



φ < φ1 < φ2 < 1 and φ3 such that φ1/φ2 < φ3 < 1.
The following events will be crucial for the proof of our main
result in Theorem 1:

E1 :=

{
rΛL

cov

rΛL

eff

> φ−1
2

}
(9)

and

E2 :=

{
ϑrΛL

sig√
L
1L +NL /∈ VΛL

}
. (10)

Proposition 1. There is a sequence of lattices such that the
following hold:

1) Conditioned under Ec
1 ∩Ec

2 , the post-processor output is
of the form

gΛL,φ

(
U, Y L

)
=

(
ϑ+

N1

φ− σN
, . . . , ϑ+

NL

φ− σN

)
,

(11)

where N1, . . . , NL are the components of NL.
2) For a fixed absolute constant β1 > 0 and sufficiently

large L, it holds that

PNL(E1 ∪ E2) ≤ exp(−Lβ1). (12)

3) There is γ > 0, such that for all sufficiently large L ∈
N \ {0} we have∥∥∥PNL − P(t)

∥∥∥
TV

≤ exp (−L · γ) . (13)

For the proof of Proposition 1, we refer the interested reader
to [15, Section 4].
Theorem 1 follows from Proposition 1. In the proof of
Theorem 1, we require the total variation distance between
two probability distributions Q and P on a probability space
Ω and and an event space Σ, which is defined as [16, Example
3.17]:

∥Q− P∥TV = sup
A∈Σ

|Q(A)− P(A)|. (14)

To prove secrecy and privacy for our scheme, we apply the
Crypto Lemma:

Lemma 1. (Crypto Lemma) [14, Lemma 4.1.1]
Let Λ be a lattice and U be a random variable dis-
tributed uniformly over the fundamental cell VΛ of Λ. Then
(s+ U) mod Λ is distributed uniformly over VΛ, independent
of the value of s.

Proof of Theorem 1. First, we argue that the pre-processing
operation obeys the power constraint. This is immediate in
case rΛL

cov >
√
L, since in this case an all-0 signal is transmit-

ted. If, on the other hand, rΛL
cov ≤

√
L, then a signal in VL is

transmitted. In this case, we have

(X1, . . . , XL) ∈ VL ⊆ B√
L (0L) , (15)

and therefore, the average power constraint is satisfied.
Next, we show that the reliability criterion of Theorem 1
follows from Proposition 1. We note that∣∣∣f̂ − f

∣∣∣ ≥ ϵ

⇔
∣∣GΛL,φ

(
U, Y L

)
− f

∣∣ ≥ ϵ

⇔

∣∣∣∣∣F (g̃ΛL,φ

(
U, Y L

))
− F

(
K∑

k=1

fk (sk)

)∣∣∣∣∣ ≥ ϵ

⇒ Φ

(∣∣∣∣∣g̃ΛL,φ

(
U, Y L

)
−

K∑
k=1

fk (sk)

∣∣∣∣∣
)

≥ ϵ

⇔

∣∣∣∣∣g̃ΛL,φ

(
U, Y L

)
−

K∑
k=1

fk (sk)

∣∣∣∣∣ ≥ Φ−1 (ϵ) ,

where the fourth line follows from the definition of the
increment majorant Φ, and the fifth line follows from the fact
that Φ is strictly increasing. Thereby,

P(t)
(∣∣∣f̂ − f

∣∣∣ ≥ ϵ
)

≤ P(t)

(∣∣∣∣∣g̃ΛL,φ

(
U, Y L

)
−

K∑
k=1

fk (sk)

∣∣∣∣∣ ≥ Φ−1 (ϵ)

)
.

(16)

By definition of ∥ · ∥TV in (14), we have for every event A

P(t) (A) ≤ PNL (A) +
∥∥∥PNL − P(t)

∥∥∥
TV

.

Using this and (16), we obtain

P(t)
(∣∣∣f̂ − f

∣∣∣ ≥ ϵ
)

≤ PNL

(∣∣∣∣∣ 1L
L∑

l=1

gl
(
U, Y L

)
−

K∑
k=1

fk (sk)

∣∣∣∣∣ ≥ Φ−1 (ϵ)

)
+
∥∥∥PNL − P(t)

∥∥∥
TV

(17)
Let β1 > 0 and γ ∈ (0, β1). By (13) in Proposition 1, we
have

∥∥PNL − P(t)
∥∥
TV

≤ exp (−Lγ) and therefore by (17),
we obtain

P(t)
(∣∣∣f̂ − f

∣∣∣ ≥ ϵ
)

≤ PNL

(∣∣∣∣∣ 1L
L∑

l=1

gl
(
U, Y L

)
−

K∑
k=1

fk (sk)

∣∣∣∣∣ ≥ Φ−1 (ϵ)

)
+ exp(−Lγ).

(18)
We define the shorthand notation

A :=

{∣∣∣∣∣ 1L
L∑

l=1

gl
(
U, Y L

)
−

K∑
k=1

fk (sk)

∣∣∣∣∣ ≥ Φ−1 (ϵ)

}
,

and obtain

PNL (A) = PNL (A ∩ (Ec
1 ∩ Ec

2)) + PNL (A ∩ (E1 ∪ E2))
≤ PNL (A ∩ (Ec

1 ∩ Ec
2)) + PNL ((E1 ∪ E2))

≤ PNL (A ∩ (Ec
1 ∩ Ec

2)) + exp (−Lβ1) , (19)



by (12) in Proposition 1. Note that

PNL (A ∩ (Ec
1 ∩ Ec

2))

≤ PNL

(∣∣∣∣∣ 1L
L∑

l=1

(
ϑ+

Nl

φ− σN

)
−

K∑
k=1

fk (sk)

∣∣∣∣∣ ≥ Φ−1 (ϵ)

)

= PNL


∣∣∣∣∣∣∣∣∣∣

1

σN

√
L

L∑
l=1

Nl︸ ︷︷ ︸
∼N (0,1)

∣∣∣∣∣∣∣∣∣∣
≥

√
L (φ− σN ) Φ−1 (ϵ)

σN

 (20)

holds, because ϑ :=
∑K

k=1 fk. Therefore, it is sufficient to
find an upper bound on the right hand side of (20). By [17,
Proposition 2.1.2], we know that for a random variable Â ∼
N (0, 1) and all z > 0 it holds that

P
(
Â ≥ z

)
≤ 1

z
· 1√

2π
e

−z2

2 .

Note that since NL ∼ N
(
0, σ2

N · idL×L

)
, we have that

1
σN

√
L

∑L
l=1 Nl ∼ N (0, 1). Thereby, we can apply [17,

Proposition 2.1.2] and obtain

PNL

(∣∣∣∣∣ 1

σN

√
L

L∑
l=1

Nl

∣∣∣∣∣ ≥
√
L (φ− σN ) Φ−1 (ϵ)

σN

)

≤ 2 · σN√
L (φ− σN ) Φ−1 (ϵ)

· 1√
2π

e

−(
√

L(φ−σN )Φ−1(ϵ))
2

2σ2
N

= 2 · σN√
L (φ− σN ) Φ−1 (ϵ)

· 1√
2π

e

−L(φ−σN )2(Φ−1(ϵ))
2

2σ2
N

and

P(t)
(∣∣∣f̂ − f

∣∣∣ ≥ ϵ
)

≤ 2 · σN√
L (φ− σN ) Φ−1 (ϵ)

· 1√
2π

e

−L(φ−σN )2(Φ−1(ϵ))
2

2σ2
N

+ exp(−Lβ1) + exp(−Lγ) =: δ,

where we have used (18), (19), (20). For the secrecy and
criterion, we observe that depending on L, the pre-processor
either outputs 0 deterministically or it has the form(

fk (sk) rsig√
L

1L + Uk

)
mod Λ

as defined in (3), in which case its output is uniformly
distributed in VΛL regardless of sk according to the Crypto
Lemma in Lemma 1. For the proof of the privacy criterion,
note that the k channel inputs XL

k := hk
L (Uk, sk) are depen-

dent of Uk and sk. However, due to the Crypto Lemma and
since K > 1, the key U at the receiver is independent of Uk

and therefore
(
XL

k , U
)

follows a product distribution. Again,
by the Crypto Lemma in Lemma 1, for each k, both XL

k and
U are uniformly distributed over VΛL regardless of the value
of (s1, . . . , sK) ∈ S1 × · · · × SK .
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