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Abstract—This paper presents a cascading scheme designed to
measure and validate the software integrity of interconnected and
automated road vehicles. With modern vehicular architectures
decoupling hardware from specific functions and supporting
frequent updates, we require proactive means to detect software
manipulations, especially as compromised control units pose
a severe risk to passenger safety. Therefore, we must ensure
the benignity of critical software components that impact the
vehicle’s dynamics while allowing for rapid adaptions and user
customizations. Our scheme requires vehicles to obtain proof
of trustworthiness before performing specific actions, such as
driving autonomously or joining a vehicle fleet. To achieve this,
we employ remote attestation techniques to compute an integrity
identifier verified and validated by a trusted third party. We
specifically design the process of integrity measurement for
hierarchically organized networks of control units, as is the
case in domain-based and zonal architectures. For evaluation,
we utilize a recently presented zonal architecture deployed in
four fully automated road vehicles and demonstrate that our
scheme incurs an acceptable overhead.

Index Terms—software integrity, automotive security

I. INTRODUCTION

The automatization and interconnection of road vehicles
have significantly boosted the importance of software and
caused profound technological changes in the automotive
domain. Historically, automobiles have relied on numerous
Electronic Control Units (ECUs) to perform dedicated tasks,
communicating through specialized automotive protocols such
as the Controller Area Network (CAN) [1]. In contrast, mod-
ern software-defined vehicles employ centralized Ethernet-
based Electrical/Electronic (E/E) architectures, featuring fewer
but more powerful ECUs that serve multiple purposes. This
software-driven approach allows for updates, the dynamic
loading of functions, and the distributed software develop-
ment independent of the underlying hardware. Adopting a
service-oriented communication approach is crucial in devel-
oping modular, scalable, and interoperable software. Promi-
nent examples include the SOME/IP [2] middleware and
the Data Distribution Service (DDS), both integrated into
the AUTOSAR Adaptive Platform [3], a software architec-
ture developed by leading automotive stakeholders. The lat-
est effort in this regard is the Automotive Service-Oriented
software Architecture (ASOA) [4] middleware, aiming at
creating high-performance and scalable automotive software.
While the software-driven approach undoubtedly paves the
way for vehicles with Advanced Driving Assistance Systems

(ADASs) and autonomous driving capabilities, the openness
and updatability of such systems lead to significant secu-
rity concerns [5]. Researchers have demonstrated how even
approved safe automobiles become deadly traps if attackers
successfully compromise them [6], [7]. As such, regulators
have called for a holistic security view throughout the entire
vehicle lifecycle [8]. In response, the industry has adapted its
organizational structures, processes, and standardized security
engineering frameworks [9]. By now, there are decent solu-
tions to protect in-vehicle communication from manipulation
attacks. However, the attacker may also reside on the ECUs,
especially in an updatable system with a frequently changing
software base. The recently published UN Regulation No.
156 [10] highlights the importance of protecting software from
manipulations as compromised ECUs may have devastating
safety consequences.

To address this challenge, we propose a proactive scheme
that determines the vehicle’s integrity whenever the vehicle
starts, or software is updated from a remote source. Our
scheme computes an integrity identifier that incorporates the
software state of each ECU and which is verified and validated
by a Trusted Software Authority (TSA). Verification refers
to cryptographic authenticity and correctness, while valida-
tion involves interpreting the identifier and comparing it to
prevailing rules. The last step is necessary because software-
defined vehicles may permit passengers to intentionally deploy
their applications, such as a customized infotainment system.
Hence, depending on the legal requirements, the validation
process can consider a vehicle trustworthy, even if uncritical
software has not been reviewed and, thus, is unknown to the
TSA. If the vehicle is considered trustworthy, a certificate
is issued, allowing the vehicle to register for further actions
such as automated driving. This way, untrusted vehicles can
be excluded from traffic before they cause any harm.

We use hardware isolation techniques to compute the afore-
mentioned integrity identifier in a cascading fashion, making
our approach specifically suitable for hierarchically organized
architectures, where some ECUs may be shielded for safety
or technical reasons. We have implemented and evaluated
the scheme for a recently presented zonal architecture and
simulated it in two different ETSI scenarios. Our work empha-
sizes the significance of ensuring software integrity in modern
vehicles and contributes to ongoing efforts to develop secure
and safe vehicular architectures.



II. RELATED WORK

Remote Attestation. The principles of remote attestation have
been widely discussed [11]. Typically, a prover makes a claim
about its system to a remote party, also referred to as the
verifier. During attestation, the prover provides computational
evidence about this claim to the verifier, who either confirms or
rejects it. Special hardware extensions like a Trusted Platform
Module (TPM), Intel Software Guard Extensions (SGX), or
the ARM TrustZone provide an isolated execution environ-
ment in which the prover creates the evidence. Alternatively,
lightweight solutions [12], [13] can be used for embedded
systems. In our work, we leverage the technique of remote
attestation to securely execute the measurement code.

Vehicle Integrity. Erickson et al. [14] propose autonomous
vehicle contracts to enforce desired driving behavior within
a platoon of self-driving vehicles. These contracts define a
set of driving parameters, such as speed and safety distance
that the vehicles in the platoon must adhere to. To ensure
compliance with the contract, powertrain and brake commands
are continuously monitored and filtered. The monitoring pro-
cess takes place in a hardware-isolated trusted environment, or
“enclave”, which allows vehicles in the platoon to attest each
other’s monitoring code and ensure conformity with the driv-
ing contract. In contrast to Erickson et al.’s approach, our work
does not focus on the integrity of specific commands during
vehicle operation. Instead, we aim to confirm the integrity of
a vehicle’s software through a measurement process that we
have postulated in earlier work [15], though without specifying
a complete protocol. Kohnhäuser et al. [16] presented a remote
attestation scheme to detect compromised software in ECUs at
load time. However, their approach assumes a trusted verifier
in each vehicle, which poses a challenge for incorporating
regular software updates from remote sources.

In-Vehicle Network Security. In-Vehicle communication has
been found to be particularly vulnerable to cyberattacks due to
the absence of authentication mechanisms in widely-deployed
automotive protocols. As a result, numerous reactive security
measures have been developed to mitigate this issue. For
instance, the AUTOSAR Secure Onboard Communication
(SecOC) [17] is an established and standardized solution
for traditional signal-based protocols. With regard to service-
oriented frameworks, there are tailored security extensions
such as those developed for SOME/IP by Zelle et al. [18]
and Iorio et al. [19], as well as a standardized security model
for DDS [20]. These solutions are doing great in preventing
eavesdropping and network manipulation attacks. However,
they lack a mechanism to detect an adversary on the ECUs,
which we attempt to address in this work.

III. BACKGROUND ON E/E ARCHITECTURES

The current trend towards dynamic and updatable automo-
tive software accompanies the transition from distributed E/E
architectures to centralized ones. In addition to the long-used
distributed multi-master architecture, two centralized archi-
tectures have emerged: domain-based and zonal. As depicted
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Fig. 1: In domain-based architectures, ECUs of a specific domain are
physically close. Typically each performs a dedicated functional task
related to the area of the respective domain. A domain has a Domain
Controller (DC) that are interconnected through a central gateway.

in Figure 1, a domain-based architecture comprises multiple
functional Domain Controllers (DCs) interconnected through
a central gateway.

A domain comprises ECUs responsible for specific func-
tional tasks associated with the respective domain. Such archi-
tectures are most effective when the connected devices are in
close proximity. Typical domains in automobiles include the
powertrain, infotainment, and ADAS. In contrast, as shown
in Figure 2, zonal architectures deploy even fewer, more
powerful, and general-purpose ECUs, reducing the overall
complexity and the number of potential failure points.

Zones are characterized by nearby devices that, unlike
domains, often possess substantial computational resources
and may execute completely unrelated operations. A central
High Performance Controller (HPC) typically performs man-
agement tasks between the zones. Given the ability to support
the needs of modular and decoupled software components,
the automotive industry has increasingly turned towards zonal
architectures. In both architecture types, ECUs are arranged
hierarchically and may be linked to smaller peripheral de-
vices like sensors and actuators. Such control units are only
connected to specific ECUs and thus are shielded from the
main bus, either for safety reasons or because of technical
limitations. Our scheme attempts to consider even the integrity
of shielded ECUs by working in a cascading way where each
ECU includes the integrity measurement of its children into
its identifier. In the following, we denote an ECU Ei a child
of Ej if Ei is linked to Ej and located hierarchically below Ei.

IV. PRELIMINARIES

System Model. Each vehicle within our ecosystem is assumed
to possess a unique digital identifier referred to as VID, akin to
a license plate number. Furthermore, we assume the existence
of a central ECU, denoted as EC, which, aside from providing
computational power for automotive tasks, functions as a
communication gateway for external components.

We introduce a generic Registration Unit (RU) requiring
vehicles to register for actions they intend to perform. The
idea behind the RU is to grant permission to the requested
action only if the vehicle can provide proof of trustworthiness,
thereby ensuring a validated software state, as compromise
may pose a significant hazard to other traffic members. The
precise role of the RU can be customized to suit a variety
of mobility concepts. For instance, a vehicle may wish to



participate in automated traffic in an urban environment, where
the RU could comprise all automobiles in a specified perimeter
that share environmental sensor data and, thus, need to trust
each other. Alternatively, the RU could be a traffic surveillance
unit, as has been suggested by recent research [21] and even
required by a German draft law [22] from 2019. Another
potential use case may be a platoon whose master vehicle
requires proof of trustworthiness from vehicles seeking to join.

In our system, a vehicle’s trustworthiness is attested by
the Trusted Software Authority (TSA), another external com-
ponent. It is primarily responsible for the maintenance of
automotive software and, for that purpose, keeps a copy of
each authentic software component. The TSA acts as a verifier
and issues a certificate if the vehicle can provide evidence for
its benign software state. Notably, unlike related work [16]
that assumes an in-vehicle trust anchor, our approach entails
each vehicle solely trusting the remote TSA and possessing its
public key. Furthermore, we assume the existence of a shared
identity key, denoted as SKEi , between each ECU and the TSA.
We acknowledge that maintaining a separate key for each ECU
in every vehicle does not scale in a large automotive ecosys-
tem. We envision a key derivation mechanism, allowing the
TSA to computationally determine SKEi based on the vehicle
identity VID. However, a practical solution is orthogonal to
the problem of ensuring trustworthiness and is therefore left
for future research.

Attacker Model. We assume an adversary, denoted as Adv,
who possesses control of the network (Dolev-Yao) and the
ECUs. Adv can drop, inject, manipulate, and delay messages
transmitted within the vehicle as well as traffic to external
units. Additionally, Adv can penetrate ECUs, where he may
install potentially harmful software and execute it, facilitated
through over-the-air updates or poorly secured interfaces.
However, we do not consider the manipulation of software dur-
ing vehicle operating time. While Adv can infiltrate hardware,
he cannot affect the code execution within trusted environ-
ments such as Intel SGX or ARM TrustZone. Moreover, Adv
cannot break cryptographic primitives as he is computationally
constrained.

V. INTEGRITY VALIDATION SCHEME

Our scheme for validating the vehicle integrity comprises
five consecutive steps, executed every time a proof of trust-
worthiness is required, typically when a vehicle starts. A
trustworthy vehicle receives a certificate that enables it to
register for an automotive action, such as participating in urban
traffic or joining a platoon. Figure 2 illustrates our scheme
schematically.

Step 1 (Initialization). The integrity measurement begins
with the central ECU EC sending an attestation request to the
TSA, containing the vehicle’s identity VID. In response, the
TSA generates a random nonce N and a distinct attestation
key AK, which will be used to authenticate the integrity
measurements. The purpose of N is to ensure freshness
and thwart Adv from replaying out-dated measurements. To

Algorithm 1 Software Integrity Measurement

1: procedure MEASURE(SCEi , IntIDC
Ei

, IntMC
Ei

, CAK
Ei

, N )
2: IntM ← array() ▷ contains all measurements
3: AK ← Dec(CAK

Ei
)SKEi

▷ get attestation key
4: for each sw ∈ SCEi do ▷ measure sw integrity
5: bin = Load(sw)
6: hash← Hash(bin) ▷ e.g., using Linux IMA
7: IntM[Ei].Append(sw,hash)
8: end for
9: authboot← GetAuthBootCodes()

10: IntM[Ei].Append(“bootchain”,authboot)
11: while idx ̸= len(IntIDC

Ei
)) do ▷ verify authenticity

12: IntIDEj ← IntIDC
Ei
[idx]

13: IntMEj ← IntMC
Ei
[idx]

14: if Verify(IntIDEj)AK = Authentic then
15: IntM. Join(IntMEj)
16: else
17: IntM[Ej]← “untrusted”
18: end if
19: end while
20: IntID ← MAC(IntM,N )AK ▷ authenticate
21: SendToParent(IntID, IntM)
22: end procedure

prevent leakage of AK, the TSA encrypts it for each ECU to
obtain CAK

Ei
= Enc(AK)SKEi

using the corresponding identity
key SKEi . The encrypted keys CAK

E1
,CAK

E2
, ...,CAK

En
along with

N are sent back to the vehicle, where EC disseminates them
to all Ei.

Step 2 (Integrity Measurement). Upon receipt, Ei com-
mences the process of measuring its software integrity by
calling the procedure Measure (Algorithm 1) in a secure
environment. The measurement of Ei produces an integrity
identifier that we refer to as IntIDEi . This value is the authenti-
cated hash of selected software components, denoted as SCEi .
These components encompass software on the functional layer,
such as SOME/IP or ASOA services, ROS nodes, or custom
binaries, often provided by third parties, as they are subject to
regular extension and updates. To prevent Adv from penetrat-
ing lower levels of the software stack, including the Operating
System (OS) or the bootloader, we also ensure the integrity
of system files and the bootloader during authenticated boot
(c.f., Section V-B).

Measure operates in a cascading manner, merging the mea-
surement of the current ECU with that of its children. As a
result, IntIDEi represents the integrity of Ei and all Ej that are
positioned hierarchically below it. This enables the inclusion
of shielded ECUs, such safety-critical embedded systems
that are directly wired to their parent without the ability to
communicate with external components. For example, if Ei
was a zone controller, IntIDEi would incorporate not only the
integrity of Ei but also of all ECUs within that particular zone.

Along with IntIDEi , Measure produces an array IntM that
contains the labels of the measured software and the corre-
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Fig. 2: An illustration of our integrity validation scheme in a simplified zonal architecture with a central HPC and four zones. After distributing
a nonce and an encrypted attestation key to each ECU (Step 1.2), the ECUs determine their software integrity by running Measure (Step
2) in a secure hardware-isolated environment. The integrity identifier is sent, along with the measurements, to the TSA for validation (Step
3.1). Depending on the result, the TSA issues a certificate (Step 3.2), which proves trustworthiness to an RU, allowing to establish a secure
channel required to perform the requested action (Step 4). To enhance legibility, we only show selected steps in one zone each.

sponding hashes. IntM enables the TSA to identify software
whose integrity check failed and factor this during validation.
Given that an ECU may have several children, we utilize
the array IntMC

Ei
to store the IntM of Ei’s children. Similarly,

IntIDC
Ei

holds the integrity identifiers of Ei’s children. In line 3,
Measure first decrypts CAK

Ei
to receive the attestation key AK.

Then, starting in line 4, Measure performs integrity measure-
ment by computing the hash of each software, which is added
along with the software label to IntMEi in line 7. Following
this, Measure retrieves the results from the authenticated boot
(line 9) to IntM[Ei], allowing the TSA to verify the benign
state of the OS and the bootloader. Finally, Measure verifies
the authenticity of the measurements (line 11) carried out
by Ei’s children using the key AK. This step is necessary
to exclude manipulations of the measurements during their
transmission within the vehicle. If the verification succeeds,
the hashes and software labels of Ei’s children are appended
to IntMEi . Otherwise, Ei flags the software of the respective
ECU as “untrusted”, allowing the TSA to determine potential
consequences during validation.

Ultimately, in line 20, the integrity identifier IntID for
ECU Ei is computed using a Message Authentication Code
(MAC) that takes as input the hashes and software labels in
IntM, along with the nonce N . Since IntM comprises the
measurement of Ei’s children, the IntID also reflects their
integrity state. Finally, both the IntID and the corresponding
measurements stored in IntM are sent to the parent ECU
(line 21).

Step 3 (Validation). A trustworthy vehicle receives a certified
digital identity that enables it to register with the RU. This
certificate links the vehicle’s identity VID to a public key
pkVID, which is generated by EC alongside the correspond-
ing secret key skVID every time the integrity measurement
process terminates. Since EC has no parent ECU within the
vehicle, it sends IntIDVID, IntMVID, and pkVID to the TSA
after terminating Measure. Furthermore, it transmits mac =
MAC(VID,pkVID)AK, allowing the TSA to verify the authentic
origin of pkVID. Upon reception, the TSA first verifies mac and
IntIDVID. For that purpose, the TSA extracts the software labels

from IntM, queries the original binaries from its database, and
computes their hashes. If the verification succeeds immedi-
ately, the vehicle’s software state is considered fully trusted.
Otherwise, the TSA identifies the distrusted software and
validates whether it must be considered critical or not. We
propose implementing a validation process that considers the
ECU on which the untrusted software runs and whether it
has access to actuators and the potential to impact vehicle
dynamics. Customization at or below the OS must be strictly
prohibited. Therefore, the integrity of all boot stages must be
ensured. That way, a customized application operating on the
infotainment system may not pose a threat, while unverifiable
software in a safety-critical zone must inevitably lead to
countermeasures. If the validation judges the vehicle trust-
worthy, the TSA issues a certificate crt = Cert(pkVID,VID),
which is eventually sent back to the vehicle. Otherwise, an
error is returned, and consequently, pkEC

remains uncertified,
rendering it impossible for the vehicle to register with the RU.

Step 4 (Registration). The registration of a vehicle with the
RU entails the process of applying for a specific automotive
action, which may vary depending on the mobility concept be-
ing employed. In either case, a secure communication channel
is necessary to perform the requested action, which gives the
possibility to exclude illegitimate vehicles. The registration
is a challenge-response mechanism between a vehicle and
the RU. Apart from the desired action, the request contains
the vehicle’s public key pkVID and the previously obtained
certificate crt. Once the request is received, the RU verifies
the certificate and responds with a challenge, denoted as c.
Upon reception, the requesting vehicle computes the signature
csig = Sign(c)skVID and sends it back to the RU. If the RU
successfully verifies csig, the vehicle is considered trustworthy,
and the requested action is permitted by establishing a secure
channel between the RU. This is achieved through the use
of the trusted public key pkVID, which may be employed, for
example, through a Diffie-Hellman key exchange. Otherwise,
the request is rejected, and the vehicle is excluded from further
actions. Hence, successful registration is contingent upon the
vehicle having undergone an integrity measurement process



prior to the request. Otherwise, the authenticity of pkVID
cannot be proven to the RU as the certificate crt would not
have been issued.

Step 5 (Invalidation). To prevent Adv from using certificates
representing an outdated software state, the TSA revokes the
issued certificate when a vehicle is powered off. To achieve
this, the central ECU implements a notification procedure
Notify to inform the TSA when the vehicle is shut down.
Similar to Measure, this procedure is executed in a secure
environment.

A. Security Requirements

The genuine and secure execution of Measure and Notify
is the fundamental assumption of our scheme. The problem,
however, is that these functions are executed in a possibly
compromised environment since our attacker model assumes
the presence of Adv on the ECUs. Therefore, both procedures
and the secret identity key SKEi are part of the Trusted
Computing Base (TCB), which is inaccessible to potential
adversaries. This design ensures that even if Adv gains access
to an ECU, it is impossible to tamper with or prevent Measure
from executing as intended, i.e., it must not be interrupted by
any other process. Technically, the TCB is protected through
enclaves, which provide an isolated and secure environment
for running trusted code, commonly referred to as secure
world. As elaborated in [16], Measure and Notify must be
kept in a write-protected memory area to preclude tampering.
Similarly, the secret identity key SKEi must be safeguarded
against illegitimate access, which can be achieved through
secure memory. Exclusive access to SKEi can be enforced
using an I/O Memory Management Unit (IOMMU).

B. Authenticated Boot

Beyond applications at the functional layer, it is essential to
incorporate low-level software components into the integrity
measurement process, particularly if ECUs are equipped with
a full-stacked OS. Adv may compromise components such as
the bootloader to gain control of the ECU. To address this,
we employ authenticated boot, a technique to ensure that a
computer system loads in an expected and trustworthy state.
The boot process typically involves multiple stages that form
a chain. The process usually begins with a code snippet from
read-only memory that contains the logic to select the boot
device where the first-stage bootloader (FSBL) is expected.
The FSBL initializes basic hardware controllers and loads
the second-stage bootloader (SSBL), for example, a U-Boot
environment. The latter loads the Linux kernel space, which in
turn loads the Linux user space where automotive applications
run. During authenticated boot, the integrity of each stage
of this boot chain is measured. The measurement results are
stored in memory rather than verified immediately, as is the
case with secure boot. We retrieve these results in line 9 of
Algorithm 1 and integrate them into the integrity identifier as
a single hash.

VI. IMPLEMENTATION & EVALUATION

In this Section, we first describe our prototype implemen-
tation and then use it to evaluate the results of the proposed
scheme.

A. Implementation

1) Physical Setup: Our physical setup is based on a recently
presented cutting-edge zonal E/E architecture for safe and
autonomous road vehicles [23]. The architecture consists of
four interconnected zones that operate within an Ethernet
network and is logically inspired by the structure of the human
nervous system. It includes a perception unit, a cerebrum, a
brainstem, and a spinal cord. While the perception processes
data from sensors such as radar, lidar, and cameras, the spinal
cord applies low-level commands to the vehicle’s actuators.
We have been involved 1 in implementing this E/E architecture
in four automated prototype vehicles [24] with predominantly
ARM-based ECUs, due to their inherent safety and security
features. For instance, modern ARM processors support a
dual-core lockstep mode and use the TrustZone technology for
software isolation. Inside the vehicles, the brainstem is the cen-
tral component capable of communicating with remote entities.
It employs a Xilinx Ultrascale+ ZU3EG-1E, which features
an ARM Cortex-R5 processor for real-time processing and an
ARM Cortex-A53 processor for general-purpose computing.
Non-resource-intensive tasks such as battery management,
HMI, and door control are handled by off-the-shelf Raspberry
Pis (RPis), which obviously do not meet automotive standards
but are well-suited for demonstration purposes. In our setup,
we recreated this zonal architecture in a best-effort approach
using the original hardware where possible. That means we
utilized the Ultrascale platform for the central ECU EC and
RPis for the remaining controllers. To implement the proposed
scheme, each ECU needs to know its parent and child nodes
within the E/E architecture. Figure 3 illustrates the hierarchical
arrangement of the ECUs schematically. Each zone ultimately
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ZC2

E4 E5
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Fig. 3: The zonal E/E architecture replicated by our setup consists of
four hierarchical layers: (1) the central brainstem as the root node,
(2) the zone controllers, (3) the ECUs, and (4) sensors and actuators.

connects to the central brainstem and consists of either two or
three ECUs, whereas one is connected to a sensor or actuator.
In total, our setup consists of 19 ECUs. We use ordinary
laptops with Intel Core i7-1260P processors and a full-stacked
Linux OS for the TSA.

1https://www.unicaragil.de/en/

https://www.unicaragil.de/en/
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Fig. 4: The ARM boot chain uses a separate SSBL to load a secure
world, in which we execute the Measure function.

2) OP-TEE: To ensure compliance with the security re-
quirements outlined in Section V-A for the execution of
Measure and Notify, we utilize the publicly available Open
Portable Trusted Execution Environment (OP-TEE) 2, a frame-
work leveraging the ARM TrustZone technology to create a
secure world in which applications and data are isolated and
protected from access by the normal world. This approach
builds upon prior work [16] in which we proposed an attes-
tation scheme for ECUs running a full-stack OS. OP-TEE
uses the ARM Security Extensions to establish a Trusted
Execution Environment (TEE) inside the secure world using
two core building blocks: A Trusted Application (TA) is a
signed binary that runs in the secure world and has access
to shielded cryptographic features such as secure memory.
In contrast, the Secure Monitor (SM) starts and stops TAs
and manages communication channels between the secure and
normal worlds. Note that while resources in the secure world
may access the normal world, the reverse is impossible. In
our implementation, we developed the Measure and Notify
procedures in C++ as TAs. Measure uses the Linux Integrity
Management Architecture (IMA) to perform the hashing of the
targeted applications in SC. At the moment, we include all
files in user space into SC to facilitate the creation of a policy
for the IMA kernel module. The specification of SC may be
adjusted to include or exclude specific files from processing.
To allow ECUs to compute an aggravated integrity identifier,
we include the addresses of the child and parent ECUs into
each instance of Measure. We argue that hardcoding these
addresses seems appropriate as the network topology remains
static. The hashes produced by the IMA are securely stored
and made available to Measure in the TEE for processing them
as described in Algorithm 1. To guarantee the integrity of the
OP-TEE environment, we integrate it into the authenticated
boot process, as illustrated in Figure 4. For that purpose, we
leverage the ARM boot chain, which provides dedicated stages
for loading a TEE within the secure world. Specifically, the
BL32 boot stage loads the SM and then the OP-TEE while
the BL33 stage loads the Linux kernel in the normal world.

While this setup allows us to evaluate the proposed scheme
in a realistic environment, it is important to note that our im-
plementation remains a prototype requiring further engineering
efforts for secure deployment in a road vehicle. Notably, the
RPi lacks a Memory Protection Unit (MPU) and hence the
ability to provide secure storage, enabling an attacker to access
sensitive data such as key material from the normal world.

2https://www.op-tee.org/

Additionally, our approach currently does not protect against
runtime attacks.

B. Evaluation

We utilize our implementation to evaluate the proposed
scheme in two steps. Initially, we analyze the average time
required for determining and validating the integrity of a
vehicle. Subsequently, we investigate the registration overhead
by simulating a moving vehicle in both an urban and a
highway environment, where it is mandated to prove its benign
software state to nearby entities.

1) Validation Overhead: We began by determining the boot
time of each ECU without our scheme enabled to obtain
a baseline. This involved loading a bare Linux OS without
performing authenticated boot or computing integrity identi-
fiers. We observed an average boot time of 17.2s on the RPis
platforms and 15.3s on the central Xilinx Ultrascale+ system.
Next, we built the OP-TEE environment, deployed it on our
setup’s ECUs, and initiated the Measure procedure in the
secure world. During the integrity measurement process, we
generated hashes of all files stored on the ECUs. Specifically,
the RPi platform contains 130,578 system files, while the Xil-
inx Ultrascale+ board has 48,738 files. Note that the integrity
of system files is expressed as a single hash, as described
in line 9 of Algorithm 1. Hence, the TSA can recognize an
untrusted OS but cannot identify the corrupted files, which is
unnecessary as we always require a benign OS. In contrast,
automotive applications in SCEi are individually included
in the integrity identifier, as these applications are typically
added or updated and, thus, require precise validation. To
simulate these applications, we created four dummy ASOA [4]
services for each ECU. This number originates from the earlier
mentioned prototype vehicles, which deploy 4.3 automotive
applications on average on every ECU. As shown in Table I,
our scheme executes in 21.3s on the RPi platform and 18.4s on
the Ultrascale+ board. Thus, the integrity measurement adds
an overhead of 4.1s and 3.1s, respectively, to the original boot
process.

While the execution time on a single ECU is a first
reasonable performance estimate, we still need to consider the
time a given ECU needs to wait for its children to terminate.
Recall that an integrity identifier includes the measurements
of all hierarchically lower positioned ECUs, resulting in a
dependency among them. For instance, the zone controller ZC1

Bare Boot
Auth.

Boot + Measure
Overhead

Single ECUs
RPi 17.2s 21.3s 4.1s
Brainstem 15.3s 18.4s 3.1s

Full Scheme
Tree 600ms
Bus 1.8s

Validation Delay 1036ms
Total Averaged Overhead 5.236s

TABLE I: Time consumption to validate the software integrity of our
setup with each ECU running four automotive applications.
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shown in Figure 3 can only proceed computing IntIDZC1
and

IntMZC1 , after the ECUs E1, E2, and E3 have provided their
results. In our setup, it takes 21.9s from booting the system to
the computation of the integrity identifier for the ECU on the
highest hierarchical layer, i.e., the brainstem. Hence, we ob-
serve an additional latency of 600ms compared to the longest
execution of Measure on a single device. This additional
latency encompasses the network delay and the waiting time
of the ECUs for their children to terminate.Ideally, the ECUs
are arranged in a flat tree since the integrity measurement can
occur fully parallel as only the root node needs to wait. In the
worst case, the ECUs are arranged in a chain where each ECU
has to wait for the adjoining one. We modified our setup to
implement the latter case and observed that the computation of
the vehicle’s integrity identifier consumes 23.1s, corresponding
to an overhead of 1.8s. We conclude that the hierarchical
arrangement of the ECUs does impact the scheme execution
time. However, this overhead is relatively low compared to the
time necessary to boot and measure the individual files.

Finally, the vehicle’s integrity identifier has to be transmitted
to and validated by the TSA. In a real scenario, a cellular
V2X channel would probably be used for transmission. For
simplicity, we use a wireless connection based on the IEEE
802.11ac standard. We measure the time it takes to transmit the
integrity identifier from the central brainstem to the TSA, to
validate it, and to reply with a certificate of trustworthiness. In
our case, the validation describes the cryptographic verification
process, but we do not judge the deployed dummy applications
since they only serve as an example. We observe an average
time of 1036ms to perform the earlier-mentioned steps on an
authenticated integrity identifier of size 1130 KB.

All in all, we have a total average overhead of 5.236s, which
we consider acceptable since this time is added to the vehicle
booting process. Most of the time is necessary for measuring
system files. We can further reduce the scheme’s overhead by
adequately configuring the OS and minimizing its overall size.

2) Registration Overhead: At last, we aimed to determine
whether the latency of the registration step is acceptable
in a real scenario. To answer this question, we simulated
an ecosystem in which traffic entities within a Range of
Awareness (RoA) engage in continuous communication to
optimize traffic and improve safety. For example, they might
share sensor data to enhance situational awareness, especially
in cases where obstacles or events are hidden from their
direct perception. A traffic entity describes a communicating
automotive object such as a vehicle, a roadside unit, or a
traffic symbol. A vehicle seeking to join automated traffic must
provide evidence of its trustworthiness to all entities in the
RoA, i.e., registration is necessary. In other words, the RU
consists of all traffic entities within a given RoA. We used
a Matlab simulation framework [25] to examine the average
time required for a vehicle to register with traffic entities
in its RoA. This framework enabled us to simulate the data
transmission based on Dedicated Short Range Communication
(DSRC), which is based on the IEEE 802.11p standard. We
assumed a moving vehicle; thus, new traffic entities appear

Parameter Value
Road layout [Highway, Urban] 5km, 3+3 lanes
Density [50, 100, 150, 200] vehicles/km
Ranges of Awareness [50, 100, 200, 300] meters
Average speeds [30, 50, 120] km/h (± 12 km/h)
Channel 5.9 GHz
Bandwidth 10 MHz
Antenna gain (tx and rx) 3 dBi
Propagation model WINNER+, Scenario B1
Shadowing Variance 3 dB, decorr. dist. 25m
Registration Payload 2136 KB

TABLE II: Technical parameters of our simulation

in the RoA while others leave. Consequently, the registration
step was continuously repeated while the vehicle was in
motion. Table II summarizes the configuration parameters of
our simulation. Our simulation considered both an urban and
a highway scenario, both established by the ETSI [26]. The
scenarios mainly differ in the density of obscuring objects,
which affects the scattering behavior. The urban environment
is densely populated with many roadside units, traffic signals,
and vehicles. In contrast, our highway features three lanes
with a primarily unobstructed line of sight. Vehicles existing
on one end of the highway re-enter the same lane on the
opposite one, requiring a new registration process as they are
treated untrusted again. We modeled vehicle speeds in the
urban and high environments using a Gaussian distribution
with average speeds of 30 km/h and 50 km/h, and 90 km/h
and 120 km/h, respectively. The standard deviation used for
both environments was 12 km/h.

Our simulation encompassed multiple experiments investi-
gating the registration overhead, i.e., the delay from a moving
automobile to all traffic entities within its RoA. We considered
densities of 50, 100, 150, and 200 traffic entities within a
perimeter of one kilometer and RoAs of 50, 100, 200, and 300
meters. Note that the RoA generally has fewer traffic entities as
it does not cover the whole scenario area. A single registration
required the transmission of the certificate of trustworthiness
crt (1048 KB), the public key pkVID (1024 KB), and the action
string (64 B) as described in the fourth step of our scheme.
We also add a flat rate of 10ms to our results to account for
the time required to verify crt and the challenge signed c,
acknowledging that this value may vary on different systems.

Figure 5 visualizes the relationship between the registration
overhead and the average number of traffic entities in all RoAs.
Our results show that the delay grows with increasing traffic

entities, although registrations are independent of each other
and run in parallel; as expected more communication leads
to more channel congestion and a larger delay. Additionally,
on average, registration takes longer in an urban environment
than on a highway, likely due to more obscuring objects,
leading to a different scattering behavior. The registration
delay ranges from 47 to 58.5ms which we found acceptable as
the minimal-induced delay in such settings has been estimated
to be approximately 40-50 ms [27].
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Fig. 5: The more traffic entities are in the RoA, the longer the reg-
istration takes. In an urban ETSI scenario, the registration generally
lasts longer due to more obscuring objects than on a highway.

VII. CONCLUSION

In this work, we presented a novel scheme for determining
and validating the software integrity of road vehicles. Unlike
existing solutions, we do not rely on a trusted in-vehicle
verification unit since such an approach does not scale for
modern updatable systems. Instead, our scheme involves a
remote component to validate a vehicle’s integrity, allowing
it to approve uncritical customizations or software from un-
known sources. This component issues a certificate if it finds
the vehicle’s software trustworthy, enabling it to register with
third parties requiring evidence of its trustworthiness. That
way, other vehicles, roadside units, or authorities can ensure
that vehicles do not pose a safety threat due to malicious
software modifications. We employ hardware isolation tech-
niques to securely compute an integrity identifier on poten-
tially compromised systems in a cascading manner, leveraging
the hierarchical structure of modern E/E architectures. We
implemented the scheme on a prototype setup based on a
recently presented zonal E/E architecture, evaluated its per-
formance, and simulated the registration step in an urban and
highway ETSI scenario. Our experimental results show that the
proposed scheme currently incurs a total overhead of 5.236s to
the vehicle’s starting procedure, while the average registration
delay ranges between 47-58.5ms. As part of our future work,
we plan to focus on runtime attacks since, currently, we are
unable to detect malicious system changes after an integrity
measurement has been carried out on a running vehicle.
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